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Fluid Dynamics and Computing:  Scale Complexity 

§  Fluid dynamics governs a broad range of physical phenomena governing 
our daily lives:  vascular flow, transportation, energy production and 
consumption, weather (atmosphere and ocean), astrophysics, … 

§  The majority of fluid flow is turbulent 
–  A broad range of scales of motion with nonlinear interaction. 
–  Sensitive to initial conditions (and other forcing) – Lorenz ’63 

•  Nonrepeatable L 

§  However, in the mean, many flows are repeatable and predictable. 
–  Reynolds-Averaged Navier-Stokes (RANS) equations are excellent 

models for computing the predictable cases – 105 x cheaper than LES 

§  The trick is to know which cases are repeatable and which are not. 
–  Unfortunately, there is no theory to say which cases are amenable to 

RANS approaches, and which are not. 
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Example of Sensitivity: 
 ANL MAX Experimental Validation Study 

§  Argonne has constructed a highly instrumented experiment (MAX) to 
provide detailed velocity and temperature data for code validation. 
–  1 x 1 x 1.68 m3 mock-up of mixing in outlet plenum (SFR or VHTR) 
–  PIV for velocity measurements 
–  Fast thermal video imaging for temperature measurements  

LES	
  of	
  thermal	
  mixing	
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 ANL MAX Experiment:  LES / RANS Comparisons1  
§  Time-averaged Nek5000 LES vs. Star-CD RANS velocity profiles at 

(x,y,z) = (x,0,z), with  z=0.5 m and z=0.95 m 

§  RANS about 105 x cheaper. 
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1	
  Merzari	
  et	
  al.,	
  On	
  the	
  numerical	
  simulaFon	
  of	
  thermal	
  striping	
  in	
  the	
  upper	
  plenum	
  of	
  a	
  fast	
  reactor,	
  ICAPP	
  (2010)	
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Major Difference in Behavior for Minor Design Change 

MAX1 

MAX2 

Simulation  Results:  

–  Small perturbation 
yields O(1) change in 
jet behavior 

–  Unstable jet, with 
low-frequency (20 – 
30 s) oscillations 

–  Visualization shows 
change due to jet / 
cross-flow interaction 

–  MAX2 results NOT 
predicted by RANS 
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Fluid Dynamics and Computing: Scale Complexity (2) 

§  Fortunately, Large Eddy Simulation (LES) and Direct Numerical Simulation 
(DNS) rely on very little modeling (none, in the case of DNS) and are 
therefore able to capture many features of turbulent flow. 

§  These approaches require simulation of a broad range of scales and their 
success is largely tied to that of parallel computing. 

§  Prior to the 80s, the majority of fluid flow simulations were 2D  
–  Definitely not turbulence! 

§  A brief taxonomy gives some insight to the fluid dynamics computational 
landscape 



u	
   a	
  

Incompressible Navier-Stokes Equations 

§  Physics:	
  	
  Low	
  Mach-­‐number	
  flow:	
  

–  Interes:ng	
  speed	
  u	
  <<	
  sound	
  speed,	
  a	
  	
  (1000x)	
  

§  Mul7scale	
  Math:	
  
–  Replace	
  fast	
  7me-­‐scale	
  with	
  an	
  infinitely	
  fast	
  one	
  and	
  use	
  op7mal	
  

solvers	
  to	
  solve	
  resul7ng	
  ellip7c	
  problem:	
  s2	
  p = f  
–  Architectural	
  Influence:	
  	
  global	
  coupling	
  

§  Highly	
  nonlinear	
  &	
  singularly	
  perturbed	
  –	
  a	
  huge	
  range	
  of	
  scales	
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Fluid Simulation Taxonomy 

§  Explicit (Jacobi-like) – compressible, high Mach-number: ||u|| ~ a 

§  Implicit or semi-implicit low-Mach and incompressible:  ||u|| << a 

–  Direct solvers: 
•  Structured:      tensor-product domains / FFT 
•  Unstructured:  e.g., nested dissection orderings – OK for 2D 

–  Iterative solvers:  unstructured 3D– 
•  Very active research topic from 1980 on… 

–  Projection / acceleration methods: CG, GMRES, etc. 
–  Preconditioning:  spectra of Az = λ Mz 
–  Polynomial preconditioning, e.g., Chebyshev iteration to      

reduce communication, etc. 
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Fluid Simulation Taxonomy 

§  Explicit (Jacobi-like) – compressible, high Mach-number: ||u|| ~ a 

§  Implicit or semi-implicit low-Mach and incompressible:  ||u|| << a 

–  Direct solvers: 
•  Structured:      tensor-product domains / FFT 
•  Unstructured:  e.g., nested dissection orderings – OK for 2D 

–  Iterative solvers:  unstructured 3D– 
•  Very active research topic from 1980 on… 

–  Projection / acceleration methods: CG, GMRES, etc. 
–  Preconditioning:  spectra of Az = λ Mz 
–  Polynomial preconditioning, e.g., Chebyshev iteration to      

reduce communication, etc. 

Spectral FFT-based methods about 10x faster than unstructured 
counterparts (lower memory, fewer variables to track, etc.) 



Scaling Beyond Petaflops –      
  An Applications-Development Perspective 

§  Three issues —  
–  Parallelism — scaling beyond P =106 
–  Algorithmic scaling — 

•  Linear system solves 
•  Discretizations 

–  Single node performance 

§  Two model discretizations —  
–  Global spectral methods 
–  Nearest neighbor methods 

(e.g., finite difference/element/volume/spectral element methods)  
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Metric for Scalability 

§  P-processor solution time for n points: 

–  T(P,n) = TA(P,n) + TC(P,n),    or          nonoverlapping comm. 

–  T(P,n) = max (TA(P,n) , TC(P,n))         overlapping comm.    

§  As a metric for scalable, seek conditions where TA > TC     i.e., 
communication is subdominant, with 

 

–  TA(P,n)  =  T(1,n) / P  =  parallel work 

–  TC(P,n)  =   total communication cost 
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Communication Performance 

§  Interprocessor communication performance has improved by orders 
of magnitude over the past decades… 

1991 
 
      
  1996 

  
2008    2012 
 
 

 
       words  (64-bit)                               

tim
e 

 (s
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Linear communication model : 
     tc (m) =  α* + β* m,   m: 64-bit words 
 
Nondimensionalize by ta   [c = a*b] :

  
  

 tc (m) =  (α + β m ) ta 
   

 α = α* / ta ,  β = β* / ta 
 
 
 



Communication Performance 
§  Computational rates have also improved…  ( reduced  ta ) 
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26 Years of Nondimensional Machine Parameters 

 YEAR     ta (us)    α*           β*       α         β       m2      MACHINE              .          
 1986      50.00  5960.   64   119.2    1.3      93   Intel iPSC-1 (286) 
 1987       .333   5960.   64  18060   192      93   Intel iPSC-1/VX 
 1988      10.00   938.   2.8     93.8    .28    335   Intel iPSC-2 (386) 
 1988       .250    938.   2.8    3752     11    335   Intel iPSC-2/VX        
 1990       .100     80.    2.8      800     28      29   Intel iPSC-i860 
 1991       .100     60.    .80      600       8      75   Intel Delta 
 1992       .066     50.    .15      758    2.3    330   Intel Paragon 
 1995       .020     60.    .27    3000     15    200   IBM SP2 (BU96) 
 1996       .016     30.    .02    1800  1.25  1500   ASCI Red 333 
 1998       .006     14.    .06    2300     10    230   SGI Origin 2000 
 1999       .005     20.    .04    4000       8    375   Cray T3E/450 
 2005       .002      4.   .026    2000     13    154   BGL/ANL 
 2008       .0017    4.   .021    2353  12.6    185   BGP/ANL 
	
  	
  2011	
  	
  	
  	
  	
  	
  	
  .0007	
  2.5	
  	
  	
  	
  .002	
  	
  	
  	
  	
  3570	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  1190	
  	
  	
  Cray	
  Xe6	
  (KTH)	
  	
  [m2=24]	
  
	
  	
  2012      .0010    4.   .005     5000    5.0  1000  BGQ/ANL 
 
§  m2  :=  α / β  ~  message size à twice cost of single-word message 

§  ta based on matrix-matrix products of order 10—13    
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Example 1: Global Spectral Methods 

§  Global Fourier, Chebyshev, or Legendre expansions in each direction 
–  very fast         (typically 10x over iterative methods) 
–  very accurate (Fourier saves 1.5 in each direction over spectral elements) 

 
§  Relevant to leading-edge science applications: 

–  turbulence theory, geophysics, astrophysics, fusion (tokamaks, stellarators) 

Chebyshev 

Chebyshev 
Fourier 



Global Spectral Methods – Computational Complexity 
§  n = N 3 points;   n/P = number of points per processor 

§  Work:  s 2 u = f :  6 FFTs:      Ta ~  ta 30 N 3 log2 N / P  = 10 (n/P) log2 n  ta 

§  Communication:    4 complete exchanges (all-to-all) 
–  4(P1/2 -1) messages of length N/P 3/2 :   

–  without contention:      Tc ~ [4 P1/2 +  4 (n/P) / m2           ] α ta  
–  with contention on 3D torus:     Tc ~ [4 P1/2 + (n/P)/(2m2) P1/3  ] α ta 

–  with contention on 2D mesh:     Tc ~ [4 P1/2 + (n/P) / m2    P1/2  ] α ta 

§  Define η = Ta / ( Ta + Tc ) 

 
 

 
N	
   N

N

N

N
N
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Global Spectral Methods – Scalability 

§  For small n/P, latency dominates – performance  is independent of topology 
§  For n/P à 104,   a 3D topology offers significant benefit 

§  With a 2D topology, an inordinate number of points are required for η = ½  

–  However, η = 0.1 can be realized for relatively small problem sizes 

n/P	
  =	
  10	
  3	
   n/P	
  =	
  10	
  4	
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  p
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P	
   P	
  

	
  
— 3D torus 
—	
  3D mesh 
 
 
—	
  2D torus 
—	
  2D mesh 



Spectral Examples: 
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§  First parallel CFD simulation:   
–  Moin & Kim (Stanford/Ames):  

         Illiac IV (1979-82) 

§  Turbulent Channel Flow  
–  64 processors;  200 Mflops 
–  22 s/step for 63x64x128 

Out-­‐of-­‐core	
  solver.	
  
	
  
	
  

Two	
  AcFve	
  Data	
  Planes	
  
for	
  x-­‐z	
  FFTs;	
  	
  
	
  
Then,	
  two	
  acFve	
  y-­‐z	
  
planes	
  loaded	
  for	
  block	
  
tridiagonal	
  solves.	
  

Flow	
  DirecFon	
  	
  



Spectral Methods on the World’s Fastest Computer,
        May, 1991 
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§  Wray & Rogallo (NASA Ames) – 2563 Fourier spectral method 
–  2/3 of the time spent in data transpose 

–  Hardest part was coding the i860, not parallel 
communication 

Q: Which of these was the World’s fastest 
computer in May, 1991? 



More Recent Spectral 
Results 
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§  Schlatter, Chevalier, Ilak & 
Henningson (2010): 

–  Turbulent boundary layer 

–  8192 x 513 x 768 

 

§  Current problem sizes in this 
community are up to ~ 10,0003 

–  Getting reasonable parallel 
efficiency because of sufficient 
bisection bandwidth 



Example 2:  Nearest Neighbor Algorithms 

§  Consider complexity estimates for 
several iterative solvers. 

§  n/P points on each processor 

§  Captures essential complexities of 
modern iterative solvers for general 
unstructured discretzations. 

§  Provides baseline to interpret other 
physics (e.g., vector fields, combustion) 

uij	
  

n1/3	
  

processor p data	
  from	
  neighbor	
  
allows	
  stencil	
  update	
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§  How far can we scale these algorithms? 
§  What limits scalability? 



Complexity Models for Iterative Solvers 

–  Point Jacobi iteration (7-point stencil): 

  — Work:         TaJ ~  14 n/P ta  

  — Communication:  TcJ ~  ( 6 +  (n/P) 2/3 (1/ m2 )   ) α ta  

–  Conjugate gradient iteration (7-point stencil):       (alt: Chebyshev iteration) 

  — Work:         TaCG ~  27 n/P ta  

  — Communication:  TcCG ~ TcJ  + 4 log2 P α ta 

–  Geometric Multigrid: 
  — Work:        TaMG ~  50 n/P ta  

  — Communication: TcMG ~ ( 8 log2 n/P + 30/m2 (n/P)2/3 + 8 log2 P ) α ta 
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Scaling Estimates:  Jacobi 

§  Q:  How large must granularity  (n/P) be for Ta ~ Tc ? 
 

❑  Jacobi scaling is independent of P. 
❑  Of course, need occasional all_reduce to check convergence… 
❑  Also, not a scalable algorithm. 

 

BG/P parameters 

23	
  



Scaling Estimates:  Conjugate Gradients 

❑  The inner-products in CG, which give it its optimality, drive up the 
minimal effective granularity because of the log	
  P scaling of all_reduce. 

❑  On BG/L, /P, /Q, however, all_reduce is effectively P-independent. 
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Eliminating log P term in CG 

§  On BG/L, /P, /Q, all_reduce is nearly P-independent. 
§  For P=524288, all_reduce(1) is only 4α !	


 

all_reduce(m)	
  

½	
  ping-­‐pong(m)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hardware	
  all_reduce	
  

all_reduce(m)	
  
P=16	
  -­‐	
  524288	
  

½	
  ping-­‐pong(m)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  so]ware	
  all_reduce	
  

Message	
  size	
  m	
  (64-­‐bit	
  words)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Message	
  size	
  m	
  (64-­‐bit	
  words)	
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Eliminating log P term in CG 

❑  On BG/L, /P, /Q, CG is effectively P-independent because 
of hardware supported all_reduce. 

❑  In this (admittedly simple) exascale model, net result is a 
10x improvement in granularity  (n/P=1200 vs. 12,000). 

2	
  .4	
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Scaling Estimates: Geometric Multigrid 

❑  In this case, granularity is relatively high because of the 8	
  log2	
  P  term, 
which is associated with the coarse solve in MG. 

❑  Replacing 8	
  α	
  log2	
  P with 16α  yields 	
  n	
  /	
  P ~ 9000, > 2x gain in scalability. 
– Further savings possible if first term is also reduced. 
– Gains could be realized through hardware support for  

 parallel prefix operations 
– Scan / Reduce primitives were central to CM5 programming model 

 are useful for a host of application problems: 
     TSP/AMG/banded solves/ etc. 
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Nearest Neighbor Scaling Examples 

Subassembly with 217 Wire-Wrapped Pins 
–  3 million 7th-order spectral elements (n=1.01 billion) 
–  16384–131072 processors of IBM BG/P 
–  15 iterations per timestep;  1 sec/step @ P=131072 
–  Coarse grid solve < 10% run time at P=131072 

η=0.8 @  
P=131072 

Strong Scaling 

7300 pts/ 
processor 
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217	
  Pin	
  Problem,	
  N=9,	
  E=3e6:	
  

–  60%	
  parallel	
  efficiency	
  @	
  P	
  =	
  106	
  

–  2000	
  points/process	
  
	
  

	
  

–	
  2	
  billion	
  points	
  

–	
  	
  BGQ	
  –	
  524288	
  cores	
  
•  1	
  or	
  2	
  ranks	
  per	
  core	
  

–  A	
  mixture	
  of	
  CG	
  /	
  mul:grid	
  

Number of Cores 

Ti
m

e 
pe

r s
te

p 

Nek5000 on 1 Million Processes 

Reactor Assembly 
S. Parker, P. Fischer 

4000 pts/core 
2000 pts/process 

Nearest Neighbor Scaling to 1 Million Ranks 
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Nearest Neighbor Example - 1 Million Cores    
             Joe Nichols, Stanford, 2013 

30	
  

§  CharLES: explicit, compressible flow solver:   
–  turbulence + acoustics;  jet noise reduction 

§  n/P = 650 
§  83% parallel efficiency @ P = 1048576 
 



Parallel Successes 
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Innovation often arises when simulations become routine, which allows 
computational scientists to truly experiment. 
 
Parallel computing has yielded developments in many areas, including: 

–  Architectures 

–  Algorithms 

–  Physics Modeling 
•  Two quick examples 



Physical “Channel Flow” 
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§  Vinuesa & Nagib (2013) have found numerically / experimentally 
that discrepancies between classic (doubly-periodic) channel flow 
and experiments are attributable to persistent secondary flows 
that drain mean-flow energy, even for high aspect-ratio ducts. 

§  Results shed light on improved estimates of the 
Karman constant that is central to RANS models 



Sublaminar Drag in Curved Pipe Flow   
    – Noorani & Schlatter ’12 

Tangen:al	
  Velocity	
  
(symmetry	
  plane)	
  
shows	
  clear	
  wave	
  	
  

pafern	
  

!"=3400	
  

10%	
  drag	
  
reduc:on!	
  

Short	
  pipe	
  (2D)	
  
Long	
  pipe	
  
Experiment	
  

§  DNS results are being 
used to calibrate new 
RANS models in com- 
mercial engineering 
codes. 
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Summary 

§  Parallel computing is central to the advancement of CFD,  in  
both engineering and research applications. 

§  Algorithmic / Parallel Scaling Analysis: 

–  CG and multigrid scale to P=106 with current architecture parameters  at 
reasonable granularity in the range of 2,000-20,000 points/core. 

•  Estimate that N ~ 1013    is the minimum problem size for an exascale 
fluid simulation. 

 

•  Hardware support for parallel prefix is one possible avenue to finer-
grained parallelism 

–  Spectral methods require moderately high dimension meshes (d > 2) 
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Thank You! 
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Parallel Successes 
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Innovation often arises when simulations become routine, which allows 
computational scientists to truly experiment. 
 
Parallel computing has yielded developments in many areas, including: 

–  Architectures 
•  distributed memory: bandwidth scales as P (!) 
•  network topologies; short-cuts, etc. 

–  Algorithms 
•  Private-memory model (resolves memory-processor affinity) 
•  Schwarz methods (in particular, RAS) 

 

–  Physics 
•  Two quick examples 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> λ.     If speed ~ 1, then tfinal ~ L/ λ. 

–  Dispersion errors accumulate linearly with time:  
  
~|correct speed – numerical speed| * t                         (for each wavenumber) 

à errort_final ~ ( L / λ ) * | numerical dispersion error | 

–  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf, << 1. 

 

High-order methods can efficiently deliver small dispersion errors.            
                                                            (Kreiss & Oliger 72,  Gottlieb et al. 2007) 

•  Cost per grid point is comparable (equal) to low-order methods. 

•  Number of points an order-of-magnitude less. 
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§  Memory constraints are pushing towards fine-grained parallelism. 

§  Is it realistic to expect an order of magnitude shift in granularity 
from current practice? 

§  Presently, granularity is an elastic parameter that is explored by 
users every day: 

–  User runs on P processors and observes a given run time, T. 

–  User runs on P'=2P processors and observes time T' ~ T/E, 
E<2, and decides whether they can tolerate the drop in 
parallel efficiency. 

–  User repeats experiment until E is too small. 

Granularity 
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Multicore Does Not Imply Fine-Grained Parallelism 

§  Consider an operation with balanced communication / computation. 
§  Assume we can reduce the time spent on work through multicore. 

Comp.	
  Comm.	
  

Parallel	
  Tasks	
  

Ti
m
e	
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Multicore Does Not Imply Fine-Grained Parallelism 

§  Internode latency is not reduced by adding more cores. 
§  Simulation becomes communication dominated. 

Comp.	
  Comm.	
  

Parallel	
  Tasks	
  

Ti
m
e	
  

Comp.	
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Multicore Does Not Imply Fine-Grained Parallelism 

§  To restore computation / communication balance, we must 
double the work per core. 

 à Net granularity per core is unchanged. 

Comp.	
  Comm.	
  

Parallel	
  Tasks	
  

Ti
m
e	
  

Comp.	
  

44	
  



§  What ultimately limits granularity?  

–   i.e., for fixed problem size, n, how far can we push P ? 

–  We have modeled several basic PDE kernels to answer this 
question. 

–  On present-day architectures with reasonably rich (i.e., > 1D 
mesh), internode latency limits strong scaling to n/P ~ 104 

§  If latency could be reduced by 10x, one could strong scale a broad 
range of applications to 10P, instead of P. 

§  Result would be a 10-fold reduction in time to solution   
    (but no reduction in energy usage). 

§  Unfortunately, latency is not readily reduced – but alternative 
strategies could help. 

Granularity 
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