
Parallel Computing and Fluid Mechanics:
A Quest for Scales

One Perspective…

Paul Fischer
Mathematics & Computer Science
Argonne National Laboratory

2	

Fluid Dynamics and Computing: Scale Complexity

§  Fluid dynamics governs a broad range of physical phenomena governing
our daily lives: vascular flow, transportation, energy production and
consumption, weather (atmosphere and ocean), astrophysics, …

§  The majority of fluid flow is turbulent
–  A broad range of scales of motion with nonlinear interaction.
–  Sensitive to initial conditions (and other forcing) – Lorenz ’63

•  Nonrepeatable L

§  However, in the mean, many flows are repeatable and predictable.
–  Reynolds-Averaged Navier-Stokes (RANS) equations are excellent

models for computing the predictable cases – 105 x cheaper than LES

§  The trick is to know which cases are repeatable and which are not.
–  Unfortunately, there is no theory to say which cases are amenable to

RANS approaches, and which are not.

3	

Example of Sensitivity:
 ANL MAX Experimental Validation Study

§  Argonne has constructed a highly instrumented experiment (MAX) to
provide detailed velocity and temperature data for code validation.
–  1 x 1 x 1.68 m3 mock-up of mixing in outlet plenum (SFR or VHTR)
–  PIV for velocity measurements
–  Fast thermal video imaging for temperature measurements

LES	
 of	
 thermal	
 mixing	

4	

 ANL MAX Experiment: LES / RANS Comparisons1
§  Time-averaged Nek5000 LES vs. Star-CD RANS velocity profiles at

(x,y,z) = (x,0,z), with z=0.5 m and z=0.95 m

§  RANS about 105 x cheaper.

LES	
 &	
 RANS:	

V	
 @	
 z=0.5	
 V	
 @	
 z=.95	

exhaust	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 incoming	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 jet	
 pair	
 	

1	
 Merzari	
 et	
 al.,	
 On	
 the	
 numerical	
 simulaFon	
 of	
 thermal	
 striping	
 in	
 the	
 upper	
 plenum	
 of	
 a	
 fast	
 reactor,	
 ICAPP	
 (2010)	

5	

Major Difference in Behavior for Minor Design Change

MAX1

MAX2

Simulation Results:

–  Small perturbation
yields O(1) change in
jet behavior

–  Unstable jet, with
low-frequency (20 –
30 s) oscillations

–  Visualization shows
change due to jet /
cross-flow interaction

–  MAX2 results NOT
predicted by RANS

6	

Fluid Dynamics and Computing: Scale Complexity (2)

§  Fortunately, Large Eddy Simulation (LES) and Direct Numerical Simulation
(DNS) rely on very little modeling (none, in the case of DNS) and are
therefore able to capture many features of turbulent flow.

§  These approaches require simulation of a broad range of scales and their
success is largely tied to that of parallel computing.

§  Prior to the 80s, the majority of fluid flow simulations were 2D
–  Definitely not turbulence!

§  A brief taxonomy gives some insight to the fluid dynamics computational
landscape

u	
 a	

Incompressible Navier-Stokes Equations

§  Physics:	
 	
 Low	
 Mach-­‐number	
 flow:	

–  Interes:ng	
 speed	
 u	
 <<	
 sound	
 speed,	
 a	
 	
 (1000x)	

§  Mul7scale	
 Math:	

–  Replace	
 fast	
 7me-­‐scale	
 with	
 an	
 infinitely	
 fast	
 one	
 and	
 use	
 op7mal	

solvers	
 to	
 solve	
 resul7ng	
 ellip7c	
 problem:	
 s2	
 p = f
–  Architectural	
 Influence:	
 	
 global	
 coupling	

§  Highly	
 nonlinear	
 &	
 singularly	
 perturbed	
 –	
 a	
 huge	
 range	
 of	
 scales	

7	

8	

Fluid Simulation Taxonomy

§  Explicit (Jacobi-like) – compressible, high Mach-number: ||u|| ~ a

§  Implicit or semi-implicit low-Mach and incompressible: ||u|| << a

–  Direct solvers:
•  Structured: tensor-product domains / FFT
•  Unstructured: e.g., nested dissection orderings – OK for 2D

–  Iterative solvers: unstructured 3D–
•  Very active research topic from 1980 on…

–  Projection / acceleration methods: CG, GMRES, etc.
–  Preconditioning: spectra of Az = λ Mz
–  Polynomial preconditioning, e.g., Chebyshev iteration to

reduce communication, etc.

9	

Fluid Simulation Taxonomy

§  Explicit (Jacobi-like) – compressible, high Mach-number: ||u|| ~ a

§  Implicit or semi-implicit low-Mach and incompressible: ||u|| << a

–  Direct solvers:
•  Structured: tensor-product domains / FFT
•  Unstructured: e.g., nested dissection orderings – OK for 2D

–  Iterative solvers: unstructured 3D–
•  Very active research topic from 1980 on…

–  Projection / acceleration methods: CG, GMRES, etc.
–  Preconditioning: spectra of Az = λ Mz
–  Polynomial preconditioning, e.g., Chebyshev iteration to

reduce communication, etc.

Spectral FFT-based methods about 10x faster than unstructured
counterparts (lower memory, fewer variables to track, etc.)

Scaling Beyond Petaflops –
 An Applications-Development Perspective

§  Three issues —
–  Parallelism — scaling beyond P =106
–  Algorithmic scaling —

•  Linear system solves
•  Discretizations

–  Single node performance

§  Two model discretizations —
–  Global spectral methods
–  Nearest neighbor methods

(e.g., finite difference/element/volume/spectral element methods)

10	

Metric for Scalability

§  P-processor solution time for n points:

–  T(P,n) = TA(P,n) + TC(P,n), or nonoverlapping comm.

–  T(P,n) = max (TA(P,n) , TC(P,n)) overlapping comm.

§  As a metric for scalable, seek conditions where TA > TC i.e.,
communication is subdominant, with

–  TA(P,n) = T(1,n) / P = parallel work

–  TC(P,n) = total communication cost

11	

Communication Performance

§  Interprocessor communication performance has improved by orders
of magnitude over the past decades…

1991

 1996

2008 2012

 words (64-bit)

tim
e

 (s
ec

)

Linear communication model :
 tc (m) = α* + β* m, m: 64-bit words

Nondimensionalize by ta [c = a*b] :

 tc (m) = (α + β m) ta

 α = α* / ta , β = β* / ta

Communication Performance
§  Computational rates have also improved… (reduced ta)

1991

 1996

2008 2012

 words (64-bit) words	
 	
 (64-bit)	

tim
e

 (s
ec

)

tim
e

/t a

26 Years of Nondimensional Machine Parameters

 YEAR ta (us) α* β* α β m2 MACHINE .
 1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
 1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
 1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
 1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
 1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
 1991 .100 60. .80 600 8 75 Intel Delta
 1992 .066 50. .15 758 2.3 330 Intel Paragon
 1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
 1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
 1998 .006 14. .06 2300 10 230 SGI Origin 2000
 1999 .005 20. .04 4000 8 375 Cray T3E/450
 2005 .002 4. .026 2000 13 154 BGL/ANL
 2008 .0017 4. .021 2353 12.6 185 BGP/ANL
	
 	
 2011	
 	
 	
 	
 	
 	
 	
 .0007	
 2.5	
 	
 	
 	
 .002	
 	
 	
 	
 	
 3570	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 1190	
 	
 	
 Cray	
 Xe6	
 (KTH)	
 	
 [m2=24]	

	
 	
 2012 .0010 4. .005 5000 5.0 1000 BGQ/ANL

§  m2 := α / β ~ message size à twice cost of single-word message

§  ta based on matrix-matrix products of order 10—13
14	

Example 1: Global Spectral Methods

§  Global Fourier, Chebyshev, or Legendre expansions in each direction
–  very fast (typically 10x over iterative methods)
–  very accurate (Fourier saves 1.5 in each direction over spectral elements)

§  Relevant to leading-edge science applications:

–  turbulence theory, geophysics, astrophysics, fusion (tokamaks, stellarators)

Chebyshev

Chebyshev
Fourier

Global Spectral Methods – Computational Complexity
§  n = N 3 points; n/P = number of points per processor

§  Work: s 2 u = f : 6 FFTs: Ta ~ ta 30 N 3 log2 N / P = 10 (n/P) log2 n ta

§  Communication: 4 complete exchanges (all-to-all)
–  4(P1/2 -1) messages of length N/P 3/2 :

–  without contention: Tc ~ [4 P1/2 + 4 (n/P) / m2] α ta
–  with contention on 3D torus: Tc ~ [4 P1/2 + (n/P)/(2m2) P1/3] α ta

–  with contention on 2D mesh: Tc ~ [4 P1/2 + (n/P) / m2 P1/2] α ta

§  Define η = Ta / (Ta + Tc)

N	
 N

N

N

N
N

16	

Global Spectral Methods – Scalability

§  For small n/P, latency dominates – performance is independent of topology
§  For n/P à 104, a 3D topology offers significant benefit

§  With a 2D topology, an inordinate number of points are required for η = ½

–  However, η = 0.1 can be realized for relatively small problem sizes

n/P	
 =	
 10	
 3	
 n/P	
 =	
 10	
 4	

es
:m

at
ed

	
 p
ar
al
le
l	
 e
ffi
ci
en

cy
	

P	
 P	

	

— 3D torus
—	
 3D mesh

—	
 2D torus
—	
 2D mesh

Spectral Examples:

18	

§  First parallel CFD simulation:
–  Moin & Kim (Stanford/Ames):

 Illiac IV (1979-82)

§  Turbulent Channel Flow
–  64 processors; 200 Mflops
–  22 s/step for 63x64x128

Out-­‐of-­‐core	
 solver.	

	

	

Two	
 AcFve	
 Data	
 Planes	

for	
 x-­‐z	
 FFTs;	
 	

	

Then,	
 two	
 acFve	
 y-­‐z	

planes	
 loaded	
 for	
 block	

tridiagonal	
 solves.	

Flow	
 DirecFon	
 	

Spectral Methods on the World’s Fastest Computer,
 May, 1991

19	

§  Wray & Rogallo (NASA Ames) – 2563 Fourier spectral method
–  2/3 of the time spent in data transpose

–  Hardest part was coding the i860, not parallel
communication

Q: Which of these was the World’s fastest
computer in May, 1991?

More Recent Spectral
Results

20	

§  Schlatter, Chevalier, Ilak &
Henningson (2010):

–  Turbulent boundary layer

–  8192 x 513 x 768

§  Current problem sizes in this
community are up to ~ 10,0003

–  Getting reasonable parallel
efficiency because of sufficient
bisection bandwidth

Example 2: Nearest Neighbor Algorithms

§  Consider complexity estimates for
several iterative solvers.

§  n/P points on each processor

§  Captures essential complexities of
modern iterative solvers for general
unstructured discretzations.

§  Provides baseline to interpret other
physics (e.g., vector fields, combustion)

uij	

n1/3	

processor p data	
 from	
 neighbor	

allows	
 stencil	
 update	
 	

21	

§  How far can we scale these algorithms?
§  What limits scalability?

Complexity Models for Iterative Solvers

–  Point Jacobi iteration (7-point stencil):

 — Work: TaJ ~ 14 n/P ta

 — Communication: TcJ ~ (6 + (n/P) 2/3 (1/ m2)) α ta

–  Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)

 — Work: TaCG ~ 27 n/P ta

 — Communication: TcCG ~ TcJ + 4 log2 P α ta

–  Geometric Multigrid:
 — Work: TaMG ~ 50 n/P ta

 — Communication: TcMG ~ (8 log2 n/P + 30/m2 (n/P)2/3 + 8 log2 P) α ta

 22	

Scaling Estimates: Jacobi

§  Q: How large must granularity (n/P) be for Ta ~ Tc ?

❑  Jacobi scaling is independent of P.
❑  Of course, need occasional all_reduce to check convergence…
❑  Also, not a scalable algorithm.

BG/P parameters

23	

Scaling Estimates: Conjugate Gradients

❑  The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log	
 P scaling of all_reduce.

❑  On BG/L, /P, /Q, however, all_reduce is effectively P-independent.

24	

Eliminating log P term in CG

§  On BG/L, /P, /Q, all_reduce is nearly P-independent.
§  For P=524288, all_reduce(1) is only 4α !	

all_reduce(m)	

½	
 ping-­‐pong(m)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hardware	
 all_reduce	

all_reduce(m)	

P=16	
 -­‐	
 524288	

½	
 ping-­‐pong(m)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 so]ware	
 all_reduce	

Message	
 size	
 m	
 (64-­‐bit	
 words)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Message	
 size	
 m	
 (64-­‐bit	
 words)	

	

25	

Eliminating log P term in CG

❑  On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all_reduce.

❑  In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

2	
 .4	

26	

Scaling Estimates: Geometric Multigrid

❑  In this case, granularity is relatively high because of the 8	
 log2	
 P term,
which is associated with the coarse solve in MG.

❑  Replacing 8	
 α	
 log2	
 P with 16α yields 	
 n	
 /	
 P ~ 9000, > 2x gain in scalability.
– Further savings possible if first term is also reduced.
– Gains could be realized through hardware support for

 parallel prefix operations
– Scan / Reduce primitives were central to CM5 programming model

 are useful for a host of application problems:
 TSP/AMG/banded solves/ etc.

 27	

Nearest Neighbor Scaling Examples

Subassembly with 217 Wire-Wrapped Pins
–  3 million 7th-order spectral elements (n=1.01 billion)
–  16384–131072 processors of IBM BG/P
–  15 iterations per timestep; 1 sec/step @ P=131072
–  Coarse grid solve < 10% run time at P=131072

η=0.8 @
P=131072

Strong Scaling

7300 pts/
processor

28	

217	
 Pin	
 Problem,	
 N=9,	
 E=3e6:	

–  60%	
 parallel	
 efficiency	
 @	
 P	
 =	
 106	

–  2000	
 points/process	

	

	

–	
 2	
 billion	
 points	

–	
 	
 BGQ	
 –	
 524288	
 cores	

•  1	
 or	
 2	
 ranks	
 per	
 core	

–  A	
 mixture	
 of	
 CG	
 /	
 mul:grid	

Number of Cores

Ti
m

e
pe

r s
te

p

Nek5000 on 1 Million Processes

Reactor Assembly
S. Parker, P. Fischer

4000 pts/core
2000 pts/process

Nearest Neighbor Scaling to 1 Million Ranks

29	

Nearest Neighbor Example - 1 Million Cores
 Joe Nichols, Stanford, 2013

30	

§  CharLES: explicit, compressible flow solver:
–  turbulence + acoustics; jet noise reduction

§  n/P = 650
§  83% parallel efficiency @ P = 1048576

Parallel Successes

31	

Innovation often arises when simulations become routine, which allows
computational scientists to truly experiment.

Parallel computing has yielded developments in many areas, including:

–  Architectures

–  Algorithms

–  Physics Modeling
•  Two quick examples

Physical “Channel Flow”

32	

§  Vinuesa & Nagib (2013) have found numerically / experimentally
that discrepancies between classic (doubly-periodic) channel flow
and experiments are attributable to persistent secondary flows
that drain mean-flow energy, even for high aspect-ratio ducts.

§  Results shed light on improved estimates of the
Karman constant that is central to RANS models

Sublaminar Drag in Curved Pipe Flow
 – Noorani & Schlatter ’12

Tangen:al	
 Velocity	

(symmetry	
 plane)	

shows	
 clear	
 wave	
 	

pafern	

!"=3400	

10%	
 drag	

reduc:on!	

Short	
 pipe	
 (2D)	

Long	
 pipe	

Experiment	

§  DNS results are being
used to calibrate new
RANS models in com-
mercial engineering
codes.

33	

Summary

§  Parallel computing is central to the advancement of CFD, in
both engineering and research applications.

§  Algorithmic / Parallel Scaling Analysis:

–  CG and multigrid scale to P=106 with current architecture parameters at
reasonable granularity in the range of 2,000-20,000 points/core.

•  Estimate that N ~ 1013 is the minimum problem size for an exascale
fluid simulation.

•  Hardware support for parallel prefix is one possible avenue to finer-
grained parallelism

–  Spectral methods require moderately high dimension meshes (d > 2)

34	

Thank You!

35	

36	

Parallel Successes

37	

Innovation often arises when simulations become routine, which allows
computational scientists to truly experiment.

Parallel computing has yielded developments in many areas, including:

–  Architectures
•  distributed memory: bandwidth scales as P (!)
•  network topologies; short-cuts, etc.

–  Algorithms
•  Private-memory model (resolves memory-processor affinity)
•  Schwarz methods (in particular, RAS)

–  Physics
•  Two quick examples

38	

Influence of Scaling on Discretization

 Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size λ) over distances L >> λ. If speed ~ 1, then tfinal ~ L/ λ.

–  Dispersion errors accumulate linearly with time:

~|correct speed – numerical speed| * t (for each wavenumber)

à errort_final ~ (L / λ) * | numerical dispersion error |

–  For fixed final error εf, require: numerical dispersion error ~ (λ / L)εf, << 1.

High-order methods can efficiently deliver small dispersion errors.
 (Kreiss & Oliger 72, Gottlieb et al. 2007)

•  Cost per grid point is comparable (equal) to low-order methods.

•  Number of points an order-of-magnitude less.

40	

§  Memory constraints are pushing towards fine-grained parallelism.

§  Is it realistic to expect an order of magnitude shift in granularity
from current practice?

§  Presently, granularity is an elastic parameter that is explored by
users every day:

–  User runs on P processors and observes a given run time, T.

–  User runs on P'=2P processors and observes time T' ~ T/E,
E<2, and decides whether they can tolerate the drop in
parallel efficiency.

–  User repeats experiment until E is too small.

Granularity

41	

Multicore Does Not Imply Fine-Grained Parallelism

§  Consider an operation with balanced communication / computation.
§  Assume we can reduce the time spent on work through multicore.

Comp.	
 Comm.	

Parallel	
 Tasks	

Ti
m
e	

42	

Multicore Does Not Imply Fine-Grained Parallelism

§  Internode latency is not reduced by adding more cores.
§  Simulation becomes communication dominated.

Comp.	
 Comm.	

Parallel	
 Tasks	

Ti
m
e	

Comp.	

43	

Multicore Does Not Imply Fine-Grained Parallelism

§  To restore computation / communication balance, we must
double the work per core.

 à Net granularity per core is unchanged.

Comp.	
 Comm.	

Parallel	
 Tasks	

Ti
m
e	

Comp.	

44	

§  What ultimately limits granularity?

–  i.e., for fixed problem size, n, how far can we push P ?

–  We have modeled several basic PDE kernels to answer this
question.

–  On present-day architectures with reasonably rich (i.e., > 1D
mesh), internode latency limits strong scaling to n/P ~ 104

§  If latency could be reduced by 10x, one could strong scale a broad
range of applications to 10P, instead of P.

§  Result would be a 10-fold reduction in time to solution
 (but no reduction in energy usage).

§  Unfortunately, latency is not readily reduced – but alternative
strategies could help.

Granularity

45	

46	

47	

