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OS Architecture Is Ancient
Most of it dates to the 60’s and 70’s

* CTSS (1961), VM/CMS (1968), UNIX (1969), VMS (1977)

It locks us in to old ways of doing things

e Using one or a few identical processor cores

* Using the OS kernel to assign cores to threads (“kernel threads”)

* Using OS kernel operations to synchronize threads (typically by locking)
* Using interrupts to synchronize threads with devices

* Using traps to let threads invoke operating system services

* Using a variety of heuristics to allocate and schedule resources

These approaches don’t cut it any more...



Hardware Has Changed

Available battery life limits user experiences
There isn’t enough energy to run all of the hardware all of the time.
How can the state of battery charge be taken into account?

Processor cores are increasingly heterogeneous
Application software developers are trying to exploit them.
Can every core type access the OS services it needs?

New sensors and interfaces are emerging

Some of these require substantial or timely resource allocation.
How are dynamic resource allocations implemented by the OS?



Software Has Changed

Parallelism varies in both form and quantity

Even different phases of a single application can exhibit such diversity.

How can the OS adapt to varying application parallelism?

Media and games require responsiveness

Different platforms need differing resources for adequate performance.
How can appropriate allocations be done without over-provisioning?

Applications are built of distributed services

These services provide search, data access, connectivity, computation, etc.
How does application performance compose from its constituent services?



A Way Forward

* Resources should be allocated to processes
— Cores of various types
— Memory (working sets)

— Bandwidths, e.g. to shared caches, memory, storage
and interconnection networks

* The operating system should:
— Optimize the responsiveness of the system
— Respond to changes in user expectations
— Respond to changes in process requirements
— Maintain resource, power and energy constraints

What follows is a scheme to realize this vision



Responsiveness

* Run times determine process responsiveness
— The time from a mouse click to its result
— The time from a service request to its response
— The time from job launch to job completion
— The time to execute a specified amount of work

* The relationship is usually a nonlinear one
— Achievable responses may be needlessly fast
— There is generally a threshold of acceptability

* Run time depends on the resources
— Some resources will have more effect than others
— Effects will often vary with computational phase



Penalty Functions

* The penalty function of a process defines how run
times translate into responsiveness
— |ts shape expresses the nonlinearity of the relationship
— The shape will depend on the application and on the
current user interface state (e.g. minimized)

* We let the total penalty be the instantaneous sum
of the current penalties of the running processes
— Resources determine run times and therefore penalties

* Assigning resources to processes to minimize the
total penalty maximizes system responsiveness
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Adjusting Penalty Functions

* Penalty functions are like priorities, except:
— They apply to processes, not kernel threads
— They are explicit convex functions of the run time

* The operating system can adjust their slopes

— Up or down, based on user behavior or
preference

— The deadlines can probably be left alone

* The total penalty is easy to compute

— The objective is to keep minimizing it



Run Time Functions

* Generally, they exhibit “diminishing returns”
as resources are added to a process

— That is, run times are roughly convex functions

* They vary with input and must be measured
— Sometimes run time increases with some resource
— We may see “plateaus” or various types of “noise”

Run time

Memory allocation



Resource Allocation As Optimization

Continuously minimize 2 -, (T (1, o, - I o.1) With
respect to the resource allocations r, ;, where

* P, m, T, and the r, ; are all time-varying;

* Pisthe set of runnable processes;

r,; = 0is the allocation of resource j to process p;

* The penalty 7z, depends on the run time z;

* 1,depends in turn on the allocated resources r, ;

* 2perlpiT
— All unused (slack) resources are allocated to process O

A;, the available quantity of resource j.



The Optimization Picture
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Convexity and Concavity

A function fis convex if for all x, y in ", A in R, and
O0=<A=<1, fllx+(1-N)y) = Mx) + (1-A)f(y)

— Chords of the function’s graph must lie on or above it

A function fis concave if for all x, y in R, A in R, and
O=<A<], f(Ax+ (1-N)y) = AMfx) + (1-A)f(y)

— Alternatively, fis concave if and only if —f is convex
Affine functions Ax + b are both convex and concave
If functions f; are convex so is their sum X, f,

If functions f; are convex so is their maximum max; f;

If fis both convex and monotone non-decreasing and g is
convex then h(x) = flg(x)) is convex

If fis convex, so is the set C = { x&dom(f) | fix)=c }
— C,is called the a-sublevel set of f



Convex Optimization

* A convex optimization problem has the form:
Minimize fy(x,, ... X,,))
subjectto f(x,, ..x,)=<0,i=1, ..k
where the functions f,: R™ — R are all convex

* Convex optimization has several virtues
— |t guarantees a single global optimal value

— It is not much slower than linear programming

* |n our formulation, resource management is a
convex optimization problem



Managing Power and Energy

* Total system power can be limited by an affine
resource constraint 2,w;-2 _,r, < W

* Total power can also be I|m|ted using i, and T,
— Assume all slack resources r, ; are powered off

— Instead of being a run time, 7, is total power
e |t will be convex in each of the slack resources ro,

— 1, has a slope that can depend on the battery charge
* Low-penalty work loses to z, when the battery is depleted

Total Power
Penalty

As charge depletes,
slope increases

aO, , Total Power



Modeling Run Times

* Run time measurements can be used to
construct a model, yielding several advantages

— “Noise” can be removed while building the model
— Interpolation among measurements is avoided
— Rates of change with resources are computable

 We have constructed several types of model
— Linear and quadratic (rate) models
— Kernel Canonical Correlation Analysis
— Genetically Programmed Response Surfaces
— Convex non-negative least squares models
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Convex Models
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Z—(W b) TO + E \/b *b b: bandwi.dth aIIoca-t'i.ons

o: bandwidth amplifications
m:. memory allocations

r(w,b)=T0+ﬁ+ﬁ+ﬁ
b —m, b

T(w,b,a,m) = TO+E

o)



blackscholes 3d Model Accuracy

5
7 Bandwiditr



2.5

cycles

1.5

0.5

blackscholes Model Accuracy

f_ictual

linear

X EORVER

Resources



Modeling Results

* Non-negative least-squares applied to past
run time data learns the model parameters

— Rows of the QR factorization are updated and
downdated to track changes in process behavior

— Columns are also updated and downdated to
remove and restore infeasible allocations

* Our convex models fit the data quite well
— They work even better within the control loop
— We have discovered some interesting artifacts
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PACORA

 PACORA stands for “Performance-Aware
Convex Optimization for Resource Allocation”

— See our paper in the poster session of HotPar ‘11

* |t manages resource allocation policy in the
Berkeley ParLab’s Tesselation operating system
— One of us (Bird) is currently demonstrating it

* Nearly all of the ideas presented here are being
prototyped in PACORA and Tesselation
— Perhaps they may be valuable elsewhere



PACORA in Tessellation
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Thanks!

Any questions?



