
A Tale of Two Timelines

William Gropp
www.cs.illinois.edu/~wgropp

2

Introduction

• Computer science has a least two
timescales:
♦ Very fast: esp. the increase in

hardware capability
♦ Slow or step changes: everything else

• Sustaining progress requires
recognizing the difference between
these

3

Amazing Increase in
Computing Power

•  Exponential increase in
performance for several
decades

•  Five (!) orders of
magnitude while I was
in MCS

•  But not everything has
changed that fast…

19
90

I Start
at MCS

I Leave
MCS

4

That “kink” in #500 is Real

•  Extrapolation of
recent data gives
~1PF HPL in 2018
on the #500 system

•  Extrapolation of
older data gives
~1PF in 2015, ~7PF
in 2018

•  The #500 may be a
better predictor of
trends

5

Frequency Scaling is Over

•  New (prediction):
Increase 4% per
year (ITRS 2012
Roadmap)

•  Old: Double every 2
years

•  The change (loss) is
enormous

•  Extrapolations are
just as dangerous as
we tell our students

0

1

2

3

4

5

6

7

8

2010 2015 2020 2025 2030

GHz

0

100

200

300

400

500

600

700

800

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

GHz

Double 2
years

RSFQ
Superconducting
technology??

6

Everything Else Changes
Slowly

•  Programming, libraries
•  Standards, software, languages

♦  Ken Kennedy said it takes at least 10 years for a new
programming language to “take”

♦  MPI and MPICH illustrate both (see later)
•  Somewhere in the middle

♦  Are Applications here? What do you think?

•  “Punctuated Equilibrium” may be a better model
♦  Combined with slow change
♦  Can argue that accelerators are another step change in

hardware (look at the top of the top500)
•  To predict the future it is useful to look at the

past…

7

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)

•  “The strongest desire expressed by these users was simply to
satisfy the urgent need to get applications codes running on
parallel machines as quickly as possible”

•  In a list of enabling technologies for mathematical software,
“Parallel prefix for arbitrary user-defined associative
operations should be supported. Conflicts between system
and library (e.g., in message types) should be automatically
avoided.”
♦  Note that MPI-1 provided both

•  Immediate Goals for Computing Environments:
♦  Parallel computer support environment
♦  Standards for same
♦  Standard for parallel I/O
♦  Standard for message passing on distributed memory machines

•  “The single greatest hindrance to significant penetration of
MPP technology in scientific computing is the absence of
common programming interfaces across various parallel
computing systems”

8

Quotes from “Enabling Technologies
for Petaflops Computing” (1995)

•  “The software for the current generation of 100 GF machines is
not adequate to be scaled to a TF…”

•  “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
♦  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to design
software that is portable across a wide variety of computer
architectures. Only then can the small but important MPP sector of
the computer hardware market leverage the massive investment that
is being applied to commercial software for the business and
commodity computer market.”

•  “To address the inadequate state of software productivity, there is a
need to develop language systems able to integrate software
components that use different paradigms and language dialects.”

•  (9 overlapping programming models, including shared memory,
message passing, data parallel, distributed shared memory, functional
programming, O-O programming, and evolution of existing languages)

Trickle up

9

Why This Matters

•  Performance gains from hardware are
slowing
♦ Some features, such as frequency scaling,

ended years ago
♦ We need to change intuition about hardware

performance and impact on algorithms and
software

•  Expectations of rapid change diverts
attention from the need to sustain
development in software and algorithms
♦ Change is a step – but the step only

succeeds if it is nurtured

10

30 years of Parallel
Computing at MCS

•  Me: 17 of those, until 5 years ago
♦ Many major transitions:

•  Shared memory (Encore Multimax) to mixed (BBN
TC2000) to distributed memory (everything since)
to mixed (SMP+RDMA)

♦  “Scalable” goes from 100x to 1,000,000x
♦ Software makes big strides in productivity

for computational scientists
• Numerical libraries (PETSc – ’90 – ‘96)
•  Parallel Computing (MPI/MPICH – ’92 – ’07 – now)

Do you recognize
this machine?

“My” First Computer
(50KFLOPS!)

12

Research in Numerical
Analysis

•  Problem: Performing research into parallel
domain decomposition algorithms
♦  Divide domain into parts, solve on parts, put back

together
♦  May want to recurse (solve by applying domain

decomposition)
•  Most numerical libraries of the time unusable

♦  Global state: Can’t nest library calls; some have high
overhead for initialization

♦  No routines to solve problems – only routines to
apply a specific algorithm

♦  Often “unnatural” data structures (designed for
algorithm, not problem)

♦  No parallelism

13

Solution: A New Way of Looking
at Numerical Libraries

•  No global state – encapsulate data and
functions needed by routine
♦ Enables algorithms that are the composition

of others
•  Organized by operation not algorithm

♦ Which algorithm and data structure is part
of the state

♦ Enables polyalgorithms where algorithm
choice is data dependent

♦ Parallelism is (mostly) hidden

14

PETSc

•  PETSc was originally a portable library for solving
linear and nonlinear systems of equations in
parallel
♦  PETSc was designed to provide a library for

experimentation in domain decomposition algorithms
•  PETSc now best described as a suite of data

structures and routines for the scalable parallel
solution of scientific applications modeled by partial
differential equations

•  Initial version allow Barry Smith and me to conduct
our research (fast change)

•  Extending PETSc to meet needs of other
applications, researchers required sustained effort…

15

Changing Numerical Libraries

•  Two very distinct
timescales
♦  Fast: New way of looking

at organization
♦  Slow: Work of

implementation, tuning,
extension

•  Requires sustained
effort to provide end-
to-end support, extend
to new application
needs 1991 1995 2000 2005 2010

PETSc-1

MPI-1 MPI-2

PETSc-2 PETSc-3
Barry

Bill

Lois

Satish

Dinesh

Hong

Kris

Matt

Victor

Dmitry

Lisandro

Jed

Shri

Peter

“Why we couldn't use numerical libraries for PETSc,” Proceedings of the
IFIP TC2/WG2.5 Working Conference on the Quality of Numerical
Software, Assessment and Enhancement, 1997.

First Gordon Bell Prize

16

Making it Safe for Parallel
Software

• 1993: “The single greatest
hindrance to significant
penetration of MPP technology in
scientific computing is the
absence of common
programming interfaces across
various parallel computing
systems”

• How do we overcome this
problem?

17

MPI and MPICH

•  Develop a standard that embodies the best ideas from
the community
♦  Standard makes portability possible
♦  Community involvement improves completeness, design
♦  ANL/MCS’s experience in portability (p4) and performance

(Chameleon) contributed to MPI’s design
•  Develop an implementation designed to provide

performance and exploit special hardware
♦  Not just a reference implementation
♦  Solve performance and productivity issues with new

algorithms and implementation ideas
♦  Stay connected to applications (DOE Mission, others) and

vendors (IBM, Cray, NEC, SGI, others)
♦  But took a sustained effort…

•  Learning from the Success of MPI, HiPC 2001

18

MPI and MPICH Timeline

90! 91! 92! 93! 94! 95! 96! 97! 98! 99! 00! 01! 02! 03! 04! 05! 06! 07! 08! 09! 10! 11!

P4,
Chameleon!
!
!

MPI-1
Standard!
!
!

MPICH-1
Released!
!
!

MPI on
1M Cores!
!
!

MPI-2
Standard!
!
!

Verification!
!
!

Scalable
Trace Files!
!
!

!
!
!

Fault
Tolerance!

!
!

!
!

12! 13!

MPI-3 !
Standard!MPICH2

Released!
!
!

Hybrid Programming!

Multithreading!
MPI-IO apps!

MPICH 3.0
Released!
!
!

Performance research!

Proc Mgmt
Software!

!
!

I/O !
Algorithms!

!
!

19

MPICH and the World

MPICH

MPI MPI2

MPICH-2

BNR

Perf
Analysis

Jumpshot SLOG IBM

ADI3

Collective
Ops

Multi
Threading

OpenMP
MPD

Scalable
System Tools SUT IMPI

NIST

ROMIO

PVFS
Large

Clusters IBM
NCSA

MicroSoft NT Cluster

ASCI

Sandia

LANL

LLNL Current
MPI-IO
Impls

HP

SGI

PETSc
UoC Flash

VIA

MVICH

LBL Put/Get
Prgming

Myrinet

Myricom

Debugging Etnus

Other Apps

Others

Data
Mngmt Java IO

MPICH-G2

Globus

NGI Topology Sens.
Collective

QoS
Topology

Infiniband

ND C++

20

MPICH2 and the World

MPICH

MPI
MPI2

MPICH-2

PMI

Perf
Analysis

Jumpshot SLOG

IBM

ADI3

Collective
Ops

Multi
Threading

OpenMP

MPD

Scalable
System Tools SUT IMPI

NIST

PVFS
Large

Clusters

IBM

NCSA

Microsoft
Win Cluster

ASCI

Sandia

LANL

LLNL
Current
MPIIO
Impls

HP

SGI

PETSc

UoC Flash

VIA

MVICH

LBL Put/Get
Prgming

Myrinet

Myricom

Debugging Etnus

Other Apps

Others

Data
Mngmt Java IO

MPICH-G2 Globus

Topology Sens.
Collective QoS Topology

Infiniband
Auto.
Reas.

SSS
SciDAC

SDM
SciDAC

Petaflops Prog. Models Parallel Lang. BG/L

Cray

IA64

ROMIO

MVAPICH

OSC

DARPA

Intel

21

Summary

•  Implementation takes time
♦  More than just “writing code”
♦  Involves research into methods, understanding of

application needs
♦  Feedback essential in making progress

•  Step changes are possible
♦  But they don’t succeed immediately
♦  Q: When was the GPU introduced by NVIDIA?

•  Founded 1993, GeFORCE in 1999, CUDA 2006

•  Progress requires an environment that supports
the work of making a revolution succeed
♦  MCS and DOE provided this environment and enabled

the parallel computing revolution

